
Writer徹底解説:評価額19億ドル、Enterprise AIの新星を完全分析
AIサマリー
評価額19億ドルに到達したWriterの全貌を徹底解説。独自LLM「Palmyra」、フルスタックのEnterprise AIプラットフォーム、そしてCEO May Habibのビジョンに迫ります。
2024年5月、あるスタートアップが静かに歴史を刻みました。
評価額$1.9B(約2,850億円)。Enterprise AI市場で「独自LLM」を持つ企業は数えるほどしかありません。OpenAI、Anthropic、Google——巨人たちが支配する市場で、ChatGPTのAPIを使わないという選択をした企業があります。
その名はWriter。
「なぜ、わざわざ独自LLMを開発するのか?」
この問いの答えは、CEOの壮絶な経歴にあります。レバノン内戦を逃れ、8人兄弟の長女として家族を支え、リーマン・ブラザーズ倒産を目の当たりにした女性が、Enterprise AI市場に革命を起こそうとしています。
本記事の表記について
- 金額の日本円換算は1ドル=150円で計算しています
- 下線付きの用語にカーソルを合わせると解説が表示されます
この記事でわかること
- Writerの独自性: 自社開発LLM「Palmyra」の競争優位性と、なぜOpenAI APIを使わないのか
- 創業者May Habib: 8人兄弟の長女、リーマン・ショック経験者が描くEnterprise AIのビジョン
- 導入事例と限界: Salesforce 3,000人導入の成果と、隠れたコスト$468+の現実
基本情報
| 項目 | 内容 |
|---|---|
| 会社名 | Writer, Inc. |
| 設立年 | 2020年 |
| 本社 | ニューヨーク・サンフランシスコ |
| 従業員数 | 約230名 |
| 評価額 | $1.9B(約2,850億円、2024年11月) |
| 総調達額 | $326M(約490億円) |
※日本円換算は1ドル=150円で計算
Writerの全体像Writerとは?「ChatGPTを使わない」という選択
Enterprise AIの異端児
「ChatGPTで十分じゃないか?」
多くの企業がそう考えます。実際、ほとんどのAIスタートアップはOpenAIやAnthropicのAPIを利用しています。安い、速い、すぐ使える——合理的な選択です。
しかしWriterは、その道を選びませんでした。
独自LLM「Palmyra」を開発する——その理由は、Enterprise顧客の「本音」にあります。
大企業が抱える3つの恐怖
Fortune 500のCIOたちは、生成AIに対して共通の懸念を持っています。
1. データ流出の恐怖
「顧客データがOpenAIのサーバーに送信される?冗談じゃない」
金融機関、医療機関、政府機関——彼らにとって、データが外部に出ることは致命的です。ChatGPT APIを使う限り、この懸念は消えません。
2. カスタマイズの限界
「うちの業界用語を理解してくれない」
汎用モデルは、特定業界の専門用語やブランドボイスを深く理解できません。ファインチューニングには限界があり、真のカスタマイズには独自モデルが必要です。
3. コストの爆発
「従量課金だと、予算が読めない」
大規模利用では、APIの従量課金が膨大な金額になります。月間数億トークンを処理する企業にとって、これは深刻な問題です。
Writerの回答:フルスタックAIプラットフォーム
Writerは、これらの恐怖に正面から向き合いました。
Palmyraシリーズ——独自開発のLLMファミリー:
- Palmyra-X-004:最新のフラッグシップモデル、320Bパラメータ
- Palmyra-Med:医療特化モデル
- Palmyra-Fin:金融特化モデル
- Palmyra-Vision:マルチモーダル対応モデル
フルスタック構成:
┌─────────────────────────────────────────────┐
│ Writer Full-Stack Platform │
├─────────────────────────────────────────────┤
│ ┌─────────────────────────────────────┐ │
│ │ AI Studio (No-Code Builder) │ │
│ └─────────────────────────────────────┘ │
│ ┌─────────────────────────────────────┐ │
│ │ Knowledge Graph (RAG Engine) │ │
│ └─────────────────────────────────────┘ │
│ ┌─────────────────────────────────────┐ │
│ │ Palmyra LLMs (独自開発) │ │
│ └─────────────────────────────────────┘ │
│ ┌─────────────────────────────────────┐ │
│ │ Enterprise Security & Compliance │ │
│ └─────────────────────────────────────┘ │
└─────────────────────────────────────────────┘
| 機能 | 説明 |
|---|---|
| Palmyra LLMs | 独自開発の大規模言語モデル(Palmyra-X-004、Palmyra-Vision等) |
| Knowledge Graph | 企業データを統合した**RAG(検索拡張生成)**エンジン |
| AI Studio | ノーコード(プログラミング不要) でAIアプリケーションを構築 |
| AI Guardrails | ブランドコンプライアンス、ファクトチェック |
| Enterprise Security | SOC 2 Type II、HIPAA、GDPRなどセキュリティ・プライバシー規格対応 |
オンプレミス(自社内サーバー) での展開も可能。顧客データが外部に一切出ない環境を構築できます。
独自LLMの開発は、想像以上に困難です。なぜWriterはそれを成し遂げられたのか?その答えは、創業者May Habibの壮絶な経歴にあります。
May Habib:レバノンからシリコンバレーへ
8人兄弟の長女——「責任」を背負った少女時代
1985年、レバノン・ベイルート。
May Habibは内戦のさなかに生まれました。空爆が日常、停電は当たり前——そんな環境で幼少期を過ごします。
しかし彼女の背負う重荷は、それだけではありませんでした。
May Habibは8人兄弟の長女。幼い弟妹を守り、家族を支える責任が、少女の肩にのしかかります。
やがて家族は安全を求めてカナダに移住。8歳の少女は、英語という新しい言語、北米という新しい文化に適応していきます。この「適応力」が、後のビジネスに活きることになります。
移民の両親から学んだ「起業家精神」
May Habibの両親は、カナダで起業家となりました。ただし、それは「選択」ではなく「必然」でした。
"May grew up in an entrepreneurial family - entrepreneurs by necessity versus by choice in that they couldn't really get any other jobs."
「Mayは起業家の家庭で育ちました。ただし選択による起業ではなく、他に仕事がなかったための必然の起業でした」
移民として言葉の壁にぶつかり、既存の雇用市場から排除された両親。その姿を間近で見て育った経験が、「言語の壁が人生を左右すべきではない」という信念の原点となります。
ハーバードでの「発見」
ハーバード大学に進学したMay Habib。専攻は経済学と近東言語・文明でした。
在学中、彼女はあることに気づきます。
「言葉には力がある」
彼女はアラビア語のアウトソーシングスタートアップを創業。まだ学生でありながら、「言語」と「ビジネス」を結びつける感覚を磨いていきました。
2007年、優等で卒業。華々しいキャリアの始まり——のはずでした。
リーマン・ブラザーズ倒産——「恐怖に慣れる」という教訓
2007年、May HabibはLehman Brothersにアナリストとして入社します。
2008年9月15日。
その日、世界金融史に残る出来事が起きました。リーマン・ブラザーズ倒産。158年の歴史を持つ投資銀行が、一夜にして消滅したのです。
26歳のMay Habibは、この崩壊を目の当たりにしました。
"Rather than scarring her, the experience taught her to be 'comfortable being uncomfortable, being scared.'"
「この経験はトラウマにはならず、『不快な状況に慣れること、恐れることに慣れること』 を教えてくれました」
Barclays Capitalがリーマンの北米部門を買収。約10,000人の雇用が救われ、May Habibはその一人となりました。
「安定など存在しない」——この教訓が、後の大胆なピボット(Qordoba→Writer)につながります。
アブダビでの「修行」——$4Bを動かす
2009年、May Habibは次のステージに進みます。
Mubadala Development Company——UAEのソブリン・ウェルス・ファンド(政府系投資ファンド)に副社長として参加。$4B(約6,000億円) を運用する小規模チームで、グローバルテクノロジー企業への投資を担当しました。
"My most formative experience came next: Abu Dhabi in 2009, joining Mubadala Development Company, the UAE's sovereign wealth fund."
「私を最も形作った経験は、2009年のアブダビでした。MubadalaでUAEのソブリン・ウェルス・ファンドに参加したのです」
4年間、グローバルな投資の最前線で働いた経験。「Enterprise向けテクノロジー」への深い理解は、ここで培われました。
Qordoba創業——そして最も困難な決断
2015年、May Habibはサンフランシスコに移り、Qordobaを創業します。ローカリゼーションソフトウェア——多言語翻訳を支援するサービスでした。
共同創業者は、後にWriterのCTOとなるWaseem Alshikh。二人はトランスフォーマー(現在のLLMの基盤技術)を機械翻訳に応用し、成功を収めます。
しかし2020年、May Habibは「成功している事業を捨てる」という決断を下します。
「フランス語から英語への翻訳だけでなく、オフブランドなコンテンツをオンブランドなコンテンツに翻訳することが可能だ」
トランスフォーマーの可能性に気づいた彼女は、QordobaをWriterへとピボット。多くの人が「やめろ」と忠告しました。
タイミングは最悪でした。2020年3月、COVID-19パンデミックの直前です。
さらに、Writerは当初英語のみに特化。多言語対応を一時的に放棄することは、May Habibにとって「翻訳ミッションの裏切り」と感じられ、個人的な苦悩を生みました。
"Initially focusing on English rather than a multilingual approach created personal anguish, feeling like 'an abandonment of our translation mission.'"
「英語のみに注力することは、翻訳ミッションの放棄のように感じられ、個人的な苦悩を生みました」
後にWriterが32言語に対応したとき、彼女は「ようやく息ができるようになった」と語ります。
8人兄弟の長女、リーマン・ショック、$4B運用、そしてパンデミック直前のピボット——この経験が、Writerの「何があっても諦めない」文化を形作りました。
CTO Waseem Alshikh:技術の要
May Habibの右腕となったのが、Waseem Alshikh。シリア出身のエンジニアです。
Beirut Arab UniversityとDamascus Polytechnic Universityで電子工学を学んだ後、Danat eVenturesでシニアプロダクトマネージャーとしてMENA地域初のオンラインモールを構築しました。
2015年、May HabibとともにQordobaを共同創業。2013年から機械翻訳でトランスフォーマーを活用してきた彼が、Palmyra LLMの開発をリードしています。
"From language barriers to AI breakthroughs: Writer CTO Waseem AlShikh"
「言語の壁からAIブレークスルーへ:Writer CTO Waseem Alshikh」
May HabibとWaseem Alshikh——二人とも中東からアメリカへの移民。「言語の壁」を身をもって経験した二人が、AIで言語の問題を解決しようとしています。
May Habibのビジョンと、Waseem Alshikhの技術力。この組み合わせが、Writerを「AIライティングツール」から「フルスタックEnterprise AIプラットフォーム」へと進化させます。
創業からわずか4年で評価額2,850億円——この急成長を支えたのは、投資家たちの「確信」でした。
資金調達:18ヶ月で評価額4倍
シリコンバレーが認めた「フルスタック」
Writerの成長タイムライン| ラウンド | 日付 | 調達額 | 評価額 | 主要投資家 |
|---|---|---|---|---|
| Seed | 2020年 | $5M(約8億円) | - | Insight Partners |
| Series A | 2021年 | $21M(約32億円) | - | Insight Partners |
| Series B | 2023年5月 | $100M(約150億円) | $500M(約750億円) | ICONIQ Growth |
| Series C | 2024年11月 | $200M(約300億円) | $1.9B(約2,850億円) | Premji Invest、Radical Ventures、ICONIQ Growth |
総調達額:$326M(約490億円)
※日本円換算は1ドル=150円で計算
Series C:「顧客が投資家になる」パターン
2024年11月のSeries Cは、特筆すべき構成でした。
Co-Lead投資家:
- Premji Invest(インドの大手投資会社、Wipro創業者一族)
- Radical Ventures(カナダのAI特化VC、Writerが彼らのグロースファンド第一号案件)
- ICONIQ Growth(既存投資家)
戦略的投資家:
- Salesforce Ventures
- Adobe Ventures
- IBM Ventures
- Workday Ventures
- Citi Ventures
注目すべきは、Salesforce、Adobe、IBM、Workday——すべてWriter採用企業であることです。顧客が投資家になる。これはプロダクトの強さの証明です。
Radical VenturesのRob Toews(新取締役)はこうコメントしています:
"Writer has the most complete platform in the Enterprise AI space."
「Writerは、Enterprise AI分野で最も完成度の高いプラットフォームを持っています」
わずか18ヶ月で評価額4倍
| 時期 | 評価額 | 成長率 |
|---|---|---|
| 2023年5月 | $500M(約750億円) | - |
| 2024年11月 | $1.9B(約2,850億円) | 3.8倍 |
独自LLM + フルスタック + Enterprise特化——この「三拍子」が揃った企業は、確かに少数です。
評価額は18ヶ月で約4倍。投資家たちの期待は、具体的な導入事例によって裏付けられていきます。
導入事例:Fortune 500が選んだ理由
Salesforce——3,000人が体験した「週1日分の節約」
規模: Salesforceは3,000人以上の従業員にWriterを展開しました。Series C投資家でもある彼らは、自らWriterの価値を証明しています。
成果:
| 指標 | 結果 |
|---|---|
| 生産性向上 | 20%(= 週1日分の節約) |
| 満足度 | 78%が「仕事にポジティブな影響」と回答 |
| 処理量 | 数十億語をレビュー |
"Salesforce has deployed Writer to over 3,000 employees, and users report a 20% productivity boost — equivalent to saving one workday per week."
「Salesforceは3,000人以上にWriterを展開。ユーザーは20%の生産性向上——週1日分の節約に相当——を報告しています」
「週1日分の節約」——3,000人の20%は、600人分の労働力に相当します。
HubSpot——60%の時間削減
課題:
HubSpotのマーケティングチームは、数百人規模。彼らが直面していた問題は、まさにWriterが解決しようとしていたものでした。
- 数百人のライターがバラバラのスタイルで執筆
- ブランドガイドラインの遵守が困難
- コンテンツレビューに膨大な時間がかかる
Writer導入後:
- コンテンツ作成時間を60%削減
- ブランドコンプライアンス率が大幅向上
- AIによる品質チェックで一貫性を確保
「60%削減」——これは単なる効率化ではありません。ライターは「書く」ことに集中でき、レビュアーは「戦略」に時間を使えるようになったのです。
Uber——「最速の市場投入」
課題:
Uberは、グローバルなコミュニティオペレーションとサポートリソースのための統一ナレッジエコシステムを必要としていました。国・地域ごとに異なる法的要件、ブランド言語——複雑性は膨大です。
Writerを選んだ理由:
"Uber selected Writer because it had the fastest speed-to-market and robust capabilities, in addition to being able to scale."
「UberがWriterを選んだ理由は、最速の市場投入スピードと堅牢な機能、そしてスケーラビリティでした」
グローバル展開での複雑性に対応できる「スピード」が、決め手となりました。
全体指標:平均9倍のROI
Writerは、顧客全体の成果をこう発表しています:
| 指標 | 結果 |
|---|---|
| 生産性節約 | 数百万時間 |
| ROI | 平均9倍 |
"Customers have saved millions of hours in productivity and see a 9x return on investment on average."
華々しい導入事例が並びます。しかし、すべてがうまくいっているわけではありません。
Writerの現実:隠れたコストと限界
「実際のコストは$468+/月」
G2レビューやAutoposting.aiの分析によると、Writerの真のコストは基本料金だけでは測れません。
| コスト項目 | 内容 |
|---|---|
| 基本料金 | 公式価格 |
| カスタム統合 | ITチームが40〜80時間を費やす |
| トレーニング時間 | チーム全体の学習コスト |
| ワークフロー中断 | 既存プロセスへの影響 |
"The real monthly cost of Writer can hit $468+ per team when including hidden expenses like custom integrations, training time, and workflow disruptions."
「カスタム統合、トレーニング時間、ワークフロー中断を含めると、実際の月額コストは$468+に達する」
長期採用率は40%
さらに厳しい現実があります。
"Only 40% of teams adopt Writer long-term."
「長期的にWriterを採用するチームは40%のみ」
つまり、導入した企業の60%が、何らかの理由で継続使用をやめているということです。
「25人以上のチーム」でないとROIが出ない
Autoposting.aiの分析によると:
"You need 25-30+ regular content creators to justify the enterprise overhead."
「エンタープライズのオーバーヘッドを正当化するには、25〜30人以上の定期的コンテンツクリエイターが必要」
中小企業や小規模チームには、Writerはオーバースペックかもしれません。
生成速度はChatGPTの6〜10倍遅い
G2レビューでの批判:
"500-word blog post generation takes 3-5 minutes, while ChatGPT does it in 30 seconds."
「500語のブログ投稿生成に3〜5分かかる。ChatGPTは30秒」
ブランドルールの厳格さが、速度を犠牲にしています。
AIコンテンツの限界
Originality.AIのレビューは、より本質的な批判を指摘しています:
- 真の創造性の欠如:AIは実際に「考えたり」「感じたり」しない
- 一般的なコンテンツ:「cutting edge」ではなく「common denominator」
- ハルシネーション:誤った情報を事実として提示するリスク
- ブランドルールが厳しすぎて創造性を制限
「GPT-4と比べてどうなのか」
Palmyra-X-004は、320Bパラメータのフラッグシップモデル。Writerは「多くのベンチマークでGPT-4やClaudeに匹敵する性能」と主張しています。
しかし、独立した第三者による詳細なベンチマーク結果は、限定的です。
特に以下の点は、導入検討時に確認が必要です:
- 汎用タスクでの性能: Enterprise特化は強みだが、汎用性はどうか
- 日本語対応: 日本語での品質は十分か
- 最新情報への対応: 知識のカットオフはいつか
Palmyraの真の実力:ベンチマークで見る
Palmyra-Med——ゼロショットでMed-PaLM-2を超える
Writerの業界特化モデルは、印象的なベンチマーク結果を残しています。
Palmyra-Med(医療特化モデル):
| ベンチマーク | Palmyra-Med | Med-PaLM-2 | 条件 |
|---|---|---|---|
| 医療ベンチマーク平均 | 85.9% | 84% | Palmyra: ゼロショット、Med-PaLM-2: 5例示 |
| MMLU Clinical Knowledge | 90.9% | - | - |
| Medical Genetics | 94.0% | - | - |
"Palmyra-Med-70b outperforms larger models like GPT-4, Gemini and Med-PaLM-2 across 9 diverse biomedical datasets, achieving state-of-the-art results with an average score of 85.9%."
重要な点:Palmyra-Medはゼロショット(例示なし) で85.9%を達成。Med-PaLM-2は5つの例を提供した場合に84%。Enterpriseでは「例示データを用意できない」ケースが多いため、この差は大きい。
Palmyra-Fin——金融ベンチマークでClaude超え
Palmyra-Fin(金融特化モデル):
"Outperforms Claude 3.5 Sonnet, GPT-4o, and Mixtral 8x7B on long-fin-eval benchmark."
「long-fin-evalベンチマークでClaude 3.5 Sonnet、GPT-4o、Mixtral 8x7Bを上回る」
コスト優位性:GPT-4比75%削減
Palmyra X5(最新フラッグシップ):
| 指標 | Palmyra X5 | GPT-4.1 | 比較 |
|---|---|---|---|
| 入力コスト | $0.60/1M tok | $2.00/1M tok | 70%安い |
| 出力コスト | $6/1M tok | $8/1M tok | 25%安い |
| コンテキスト | 1Mトークン | 1Mトークン | 同等 |
"Writer releases Palmyra X5, delivers near GPT-4.1 performance at 75% lower cost."
「GPT-4並みの性能を75%安く」——Enterprise向けの大規模利用では、このコスト差は膨大な金額になります。
競合比較:Writer vs Jasper vs OpenAI
競合比較| 項目 | Writer | Jasper | OpenAI Enterprise | Anthropic |
|---|---|---|---|---|
| 独自LLM | ◎ Palmyra | × GPT利用 | ◎ GPT | ◎ Claude |
| Enterprise機能 | ◎ | ○ | ◎ | ○ |
| 業界特化モデル | ◎ | × | × | × |
| オンプレミス | ◎ | × | × | × |
| ノーコード構築 | ◎ | ○ | △ | △ |
| 価格帯 | 高 | 中 | 高 | 中〜高 |
| 導入実績 | 数百社 | 10万社以上 | 多数 | 多数 |
Jasperとの競合
同じEnterprise AIライティング市場には、Jasper(評価額$1.5B)という強力な競合がいます。
Jasperは「GPT APIを使う」選択をしたことで、より低価格・より広い顧客層を獲得しています。
Writerの「独自LLM」という選択は、Enterprise向けの差別化には有効ですが、市場シェアという点ではJasperに後れを取っています。
Writerを選ぶべき企業
- データが外部に出せない: 金融、医療、政府機関など規制の厳しい業界
- 業界特化のカスタマイズが必要: 専門用語、ブランドボイスの深い理解が必要
- 大規模利用でコスト予測性が必要: 月間数億トークン規模の利用
- 25人以上のコンテンツチーム: ROIを正当化できる規模
Writerを選ぶべきでない企業
- まずは試してみたい: GPT APIやJasperの方が導入ハードルが低い
- 汎用的な用途: 特定業界に特化していない場合、汎用モデルで十分
- コストを抑えたい: Writerは高価格帯
- 小規模チーム: 25人未満ではROIが出にくい
今後の展開
Writerアーキテクチャ2024-2025年の動き
| 時期 | 出来事 |
|---|---|
| 2024年7月 | Palmyra-Med、Palmyra-Fin発表(業界特化モデル) |
| 2024年10月 | Palmyra X 004発表(フロンティアモデル) |
| 2024年11月 | Series C $200M調達、評価額$1.9Bに |
| 2025年 | Palmyra X5発表(1Mトークンコンテキストウィンドウ) |
今後のロードマップ
- Palmyraの進化: さらなる性能向上と業界特化モデルの拡充
- グローバル展開: ヨーロッパ、アジア市場への本格参入
- AIエージェント: クイックスタートAIアプリケーションとエージェントの急速な拡大
May Habibは、Writerの未来をこう語ります:
"Our vision is to make AI the core infrastructure of companies. Not just a tool, but embedded in every business process."
「私たちのビジョンは、AIを企業の中核インフラにすることです。単なるツールではなく、すべてのビジネスプロセスに組み込まれた存在になる」
「ツール」から「インフラ」へ——これがWriterの目指す未来です。
まとめ:独自LLMという「賭け」は正しかったのか
冒頭の問いに戻りましょう。
「なぜ、わざわざ独自LLMを開発するのか?」
答えは、**「Enterprise顧客の本当のニーズに応えるため」**でした。
データが外に出せない。汎用モデルでは業界特有のニュアンスが伝わらない。コストが読めない——大企業が抱えるこれらの「恐怖」に、独自LLMは正面から応えています。
しかし、この「賭け」が正しかったかどうかは、まだ結論が出ていません。
OpenAIがEnterprise機能を強化し続ける中、Writerの優位性がいつまで続くかは不透明です。長期採用率40%、隠れたコスト$468+——華々しい数字の裏には、厳しい現実もあります。
それでもWriterが評価額2,850億円に到達したのは、「独自LLMを持つEnterprise AI企業」という希少なポジションに、投資家たちが価値を見出したからです。
そしてMay Habib——8人兄弟の長女、リーマン・ショック経験者、$4B運用経験者——彼女の「不快な状況に慣れる」という哲学が、Writerを支えています。
主要ポイント
| 項目 | 内容 |
|---|---|
| 創業者 | May Habib(8人兄弟の長女、リーマン・ショック経験、$4B運用経験) |
| 独自性 | 独自LLM「Palmyra」、オンプレミス対応、業界特化モデル |
| 実績 | Salesforce 3,000人(20%生産性向上)、HubSpot(60%時間削減)、平均9倍ROI |
| 評価額 | $1.9B(約2,850億円)、総調達額$326M |
| 限界 | 隠れたコスト$468+、長期採用率40%、25人以上のチーム向け |
次のステップ
- Enterprise CTO/CIO: Writer公式サイトでデモを依頼し、自社のセキュリティ要件との適合性を確認
- マーケティング責任者: ブランドコンプライアンスの課題を洗い出し、Writerの導入効果を試算(25人以上のチームか確認)
- スタートアップ: まずはJasperやGPT APIで検証し、規模拡大後にWriterを再検討
関連記事
参考リソース
Writer公式
テックメディア報道
創業者関連
批判的レビュー
本記事はネクサフローのAI研究シリーズの一部です。
この記事の著者

中村 知良
代表取締役
早稲田大学卒業後、ソフトバンク株式会社にてAI活用やCEO直下案件のプロジェクトマネージャーに従事。その後、不動産スタートアップPit in株式会社の創業、他スタートアップでの業務改善・データ活用を経験後、2023年10月、株式会社ネクサフローを創業し代表取締役CEO就任。


